

International Journal of Ingenious Research, Invention and Development

An International, High Impact Factor, Double-Blind Peer-Reviewed, Open-Access, Multidisciplinary Online Journal

Volume 3 | Issue 5 | October 2024

SavvyShoper - Smart Grocery Recommender and Price **Comparison System Using Machine Learning**

Arunadevi S. Khaple¹, Gayatri C. Mhaisne², Gayatri N. Musmade³, Omkar A. Narawde⁴,

Pratik A. Nayakwadi⁵

¹Assistant Professor, Department of Computer Engineering, Zeal College of Engineering & Research, Pune (MH), India ^{2,3,4,5}Student, Department of Computer Engineering, Zeal College of Engineering & Research, Pune (MH), India

Abstract: The rapid growth of e-commerce has made consumer reviews, opinions, and shared experiences vital sources of information that reflect customer preferences. These reviews are invaluable for developing recommender systems, which help guide potential buyers towards preferred products. However, the complexity of extracting and utilizing textual data poses a significant challenge in formalizing a comprehensive mechanism for selecting and retrieving relevant opinions from the vast amount of information available. This paper introduces a novel recommender system based on consumer product reviews, proposing a prioritizing mechanism to enhance the selection and retrieval of opinions. The system's effectiveness is demonstrated through a case study involving the recommendation of digital cameras, showcasing how this method can effectively utilize consumer reviews. The proposed approach provides a significant improvement in the ability to analyze and leverage user-generated content in recommender systems. As e-commerce continues to expand, these systems have become essential tools for both businesses and consumers, simplifying the process of managing business transactions online and making informed purchasing decisions through tailored recommendations based on customer feedback.

Keywords: Personalized Product Suggestion, Price Comparison, Discount Tracking, Review Analysis.

I. INTRODUCTION

The Smart Grocery Recommendation System revolutionizes online grocery shopping by providing tailored product suggestions and enabling price comparisons across various retailers. Utilizing advanced deep learning techniques, this system efficiently identifies and matches items from multiple sources, ensuring users have access to the most competitive prices available.

By analyzing individual user preferences, shopping habits, and past behavior, the system crafts a personalized shopping journey that enhances the overall user experience. The price comparison functionality not only helps users save money but also consolidates shopping from different stores into a single, user-friendly platform.

With its deep learning capabilities, the system improves the accuracy of product recommendations and simplifies the shopping process. Ultimately, the Smart Grocery Recommendation System is designed to make online grocery shopping more convenient and budget-conscious, allowing users to effortlessly find the best deals without the need to navigate through numerous websites.

International Journal of Ingenious Research, Invention and Development

An International, High Impact Factor, Double-Blind Peer-Reviewed, Open-Access, Multidisciplinary Online Journal

Volume 3 | Issue 5 | October 2024

II. OBJECTIVES

The Smart Grocery Recommendation System is set to create a sophisticated deep learning model that efficiently matches grocery items across diverse platforms. This system will emphasize real-time price comparisons, pulling data from multiple retailers to help users secure the best deals. By providing personalized recommendations based on each user's preferences and past shopping habits, the system aims to elevate the online grocery shopping experience.

The core goal is to make online grocery shopping straightforward and user-friendly. It will also assist users in saving money through enhanced price comparisons, ensuring affordability. With scalability in mind, the system is designed to accommodate various platforms and extensive product inventories. Over time, it will continually refine its recommendations, improve the user experience, and adapt to the changing needs of consumers.

III. LITERATURE REVIEW

Sr. No.	Title	Year	Objective	Methodology	Advantages	Future Scope	
1	An Online	2020	Develop a	The proposed model employs	Enhances	Involves	
	Recommendati		recommendation	a Convolutional Neural	Recommendations	integrating real-	
	on System		system for textile	Network (CNN) architecture	by focusing on color	time feedback	
	Using Deep		products utilizing deep	to recommend textile	compatibility yields	to refine	
	Learning for		learning.	patterns by evaluating color	more relevant	recommendatio	
	Textile Products			compatibility.	pattern suggestions.	ns.	
2	Product	2023	Implement a	Involves utilizing a web	Evaluate data from	Could enhance	
	Comparison		customized algorithm	crawler to gather data, a web	various e-commerce	the accuracy of	
	Website using		that analyzes price,	scraper that extracts HTML	sites, for best deals	recommendatio	
	Web scraping		features, and user	information for analysis,	through product	ns by analyzing	
	and Machine		ratings.	along a relevance filter to	comparisons.	complex user	
	learning.			eliminate irrelevant results,		behaviors and	
				and a personalized		preferences.	
				recommendation system.			
3	Exploring the	2024	To explore hybrid	A systematic literature review	HRS improves	Future research	
	Landscape of		recommendation	of HRS approaches,	recommendation	could focus on	
	Hybrid		systems (HRS) in e-	challenges, and algorithm	accuracy and	integrating	
	Recommendati		commerce and their	combinations in e-commerce	addresses	advanced AI	
	on System in E-		role in enhancing	over the last six years	limitations like data	techniques to	
	Commerce : A		customer experience.		sparcity and cold	further enhance	
	Systematic				start problems.	personalization	
	Literature					and	
	Review					transparency in	
						recommendatio	
						n systems	

Table 1: Literature Survey

Content from this work may be used under the term of the Creative Commons Attribution-Non-commercial (CC BY-NC) 4.0 licence. This

license allows refusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. Any further distribution of this work must maintain attribution to the creators. © copyright at IJIRID. DOI: 10.5281/zenodo.13986594 293

International Journal of Ingenious Research, Invention and Development

An International, High Impact Factor, Double-Blind Peer-Reviewed, Open-Access, Multidisciplinary Online Journal

Volume 3 | Issue 5 | October 2024

4	E-commerce	2023	To provide a product	Involves using web crawling	Using Web scraping	Could enhance
	Price		comparison website	and scraping techniques to	automates the	the price
	Comparison		that scrapes data	automate the extraction of	collection of pricing	comparison by
	Website Using		from multiple e-	pricing data from online	data from multiple	incorporating
	Web Scraping		commerce platforms,	retailers, facilitating quick	retailers, providing	advanced
			allowing users to	and precise price	users with up-to-	features such as
			compare prices,	comparisons.	date price	real-time price
			features, and ratings		comparisons that	alerts and
			of products.		reflect the current	personalized
					market.	recommendatio
						ns.
5	Implementation	2022	The system	uses MySQL database	A "special basket"	Could be
	of Online		recommends grocery	management, and	feature is added to	Optimized in
	Grocery		products based on	collaborative filtering	address individual	mobile
	Recommendati		users' purchase	techniques (slope one and	user needs, offering	accessibility,
	on System by		history and similar	min-hash) for personalized	essential items	crucial as more
	using Python		local area buying	recommendations	customized for	users shop via
	Flask & Machine		patterns.		different user	smartphones
	Learning				profiles.	and tablets.
6	Online Grocery	2022	Create a grocery site	Use PCA and K Means	Enhances user	Expand with
	Recommendati		with personalized	clustering on customer data	experience and	more advanced
	on System		product	to suggest products.	boosts sales	algorithms and
			recommendations		through tailored	broader
			using machine		recommendations.	customer data
			learning.			integration.
7	An Algorithm	2021	Create a bulk grocery	Recommends items by	Efficient, no	Enhance recipe
	for		recommendation	matching basket contents to	reliance on	matching and
	Recommending		system based on	relevant food subcategories.	user ratings.	expand food
	Groceries Based		potential recipes			categories.
	on an Item					
	Ranking					
	Method					
8	Product	2020	Create a system to	Collaborative filtering and	Provides accurate,	Enhance with
	Recommendati		recommend products	association rule mining for	personalized	advanced
	on System for		based on customer	regular customers.	recommendations	algorithms and
	Supermarket		needs.			Al integration
9	A Novel Web	2020	To propose a novel	Utilize string-based methods	Improves extraction	Adapting the
	Scrapping	-	web scraping	and additional metadata	time by 60 times	approach to
	Approach Using		approach that	without constructing a DOM	compared to	handle dynamic
	the Additional		enhances time	tree.	traditional DOM-	content like
	Information		efficiency using		based methods.	Ajax requests
	Obtained From		, c			officiently
1	Obtained From		auullionai			encienciy
	Web Pages		information from web			enciency

Content from this work may be used under the term of the Creative Commons Attribution-Non-commercial (CC BY-NC) 4.0 licence. This

International Journal of Ingenious Research, Invention and Development

An International, High Impact Factor, Double-Blind Peer-Reviewed, Open-Access, Multidisciplinary Online Journal

Volume 3 | Issue 5 | October 2024

10	Dynamic		Maximize marketing	Utilize a competitive WOM	Enhances profit	Explore
	Discount Pricing		profit through	propagation model	over static pricing	applications
	in Competitive		dynamic discount	integrated with optimal	strategies by	across diverse
	Marketing	2019	pricing in competitive	control for pricing strategies.	leveraging real-time	industries and
			environment		consumer behavior.	evolving digital
						marketing
						landscapes.

IV. PROPOSED SYSTEM DESIGN

Content from this work may be used under the term of the Creative Commons Attribution-Non-commercial (CC BY-NC) 4.0 licence. This

International Journal of Ingenious Research, Invention and Development

An International, High Impact Factor, Double-Blind Peer-Reviewed, Open-Access, Multidisciplinary Online Journal

Volume 3 | Issue 5 | October 2024

For developing Savvy Shopper, a price comparison and personalized recommendation platform, encompasses a structured approach focused on five main components: Data Collection, Recommendation Algorithms, Natural Language Processing (NLP), Predictive Modelling, and API Integration. The application is designed to offer an intuitive interface for users to compare prices and receive tailored product suggestions from various e-commerce platforms, emphasizing scalability and real-time data processing.

At its core, the frontend is developed using the Python Flask framework, chosen for its simplicity and flexibility, managing user authentication, product search, recommendation display, and price alerts across multiple devices. The backend serves as the application's backbone, consisting of an API Gateway that routes user requests, a Business Logic Layer that processes these requests and manages user sessions, and a Recommendation Engine that employs a hybrid system combining collaborative filtering, content-based filtering, and machine learning techniques to deliver personalized suggestions. The Data Layer manages both structured and unstructured data using a combination of MySQL and NoSQL databases, facilitating efficient storage and retrieval.

Effective data collection is critical for enabling price comparisons and personalized recommendations. Web scraping with Scrapy is utilized to gather structured data from various e-commerce sites, including product names, prices, availability, and user reviews, ensuring a comprehensive dataset for analysis. The recommendation engine itself relies on collaborative filtering to analyse user behaviour and identify similarities among users, while content-based filtering suggests products based on their attributes and user profiles.

To enhance user experience further, essential NLP techniques are implemented, including text vectorization methods like TF-IDF, which convert product descriptions and reviews into numerical formats for effective analysis. Predictive modelling techniques, such as Support Vector Machines (SVM) and regression analysis, are employed to classify customer satisfaction and forecast price trends, allowing for adjustments in recommendations based on anticipated behaviours.

Finally, the integration of REST APIs enables seamless communication between the frontend and backend, facilitating real-time access to product data and user preferences. This allows Savvy Shopper to deliver timely price comparisons and customized recommendations, enhancing user engagement and satisfaction in the grocery sector.

V. FUTURE SCORE

The future scope of the Smart Grocery Recommendation and Price Comparison System will involve expanding its capabilities to support more diverse product categories and integrating with a wider range of retailers and e-commerce platforms. The system will incorporate advanced machine learning models to provide even more accurate and personalized recommendations, adapting to changing user preferences over time. It will also include enhanced features such as predictive analytics, allowing users to anticipate price fluctuations and upcoming deals. Furthermore, the system will aim to integrate voice search and virtual assistants for a seamless, hands-free shopping experience. As user data grows, it will improve its ability to provide hyper-personalized recommendations and ensure real-time quality checks based on customer reviews.

Content from this work may be used under the term of the Creative Commons Attribution-Non-commercial (CC BY-NC) 4.0 licence. This license allows refusers to distribute, remix, adapt, and build upon the material in any medium or format for non-commercial purposes only, and only so long as attribution is given to the creator. Any further distribution of this work must maintain attribution to the creators. © copyright at IJIRID. **DOI:** 10.5281/zenodo.13986594 296

International Journal of Ingenious Research, Invention and Development

An International, High Impact Factor, Double-Blind Peer-Reviewed, Open-Access, Multidisciplinary Online Journal

Volume 3 | Issue 5 | October 2024

Additionally, the system will focus on global scalability, allowing it to cater to users from different regions and optimize product recommendations across international markets.

VI. OUTPUT

The anticipated outcomes of the Smart Grocery Recommendation and Price Comparison System focus on enhancing user convenience by delivering personalized grocery suggestions tailored to individual preferences and shopping history. Users will experience substantial cost savings through real-time price comparisons from multiple platforms, ensuring they access the best available deals.

By streamlining the online shopping process, the system aims to boost customer satisfaction, making grocery shopping more efficient and intuitive. Leveraging deep learning algorithms for accurate product matching will facilitate dependable comparisons, while customized recommendations will promote increased user engagement. Ultimately, the system is designed to make grocery shopping more efficient, convenient, and affordable for all users.

VII. CONCLUSION

To wrap up, the Smart Grocery Recommendation and Price Comparison System is set to revolutionize the way people shop for groceries online. By utilizing advanced deep learning techniques, the system will deliver customized product suggestions and real-time price insights, along with evaluations of product quality based on user reviews. This innovative approach simplifies the shopping experience by tailoring recommendations to match individual preferences and purchasing patterns while ensuring users find the best prices available across various retailers.

Furthermore, the inclusion of quality assessments derived from customer feedback will help shoppers make more informed decisions about the products they choose. By significantly cutting down the time and effort involved in locating the best deals and highest-rated items, the system promises to enhance convenience, boost customer satisfaction, increase sales for retailers, and create a more effective and user-friendly online grocery shopping journey.

REFERENCES

- [1] W. Zhou, P. Y. Mok, Y. Zhou, Y. Zhou, J. Shen, Q. Qu, and K. P. Chau, "Fashion recommendations through cross-media information retrieval," J. Visual Commun. Image Represent., vol. 61, pp. 112–120, 2019.
- [2] L. Zhao, Z. Lu, S. J. Pan, and Q. Yang, "Matrix factorization for movie recommendation," in IJCAI, pp. 3945– 3951, July 2016.
- [3] P. Covington, J. Adams, and E. Sargin, "Deep neural networks for YouTube recommendations," in Proceedings of the 10th ACM Conference on Recommender Systems, pp. 191–198, September 2016.
- [4] L. Jiang, Z. Wu, Q. Zheng, and J. Liu, "Learning deep web crawling with diverse features," in 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, vol. 1, pp. 572-575. IEEE, 2009.
- [5] S. Philip, P. Shola, and A. Ovye, "Application of content-based approach in research paper recommendation system for a digital library," International Journal of Advanced Computer Science and Applications, vol. 5, no. 10, 2014.

Content from this work may be used under the term of the Creative Commons Attribution-Non-commercial (CC BY-NC) 4.0 licence. This

International Journal of Ingenious Research, Invention and Development

An International, High Impact Factor, Double-Blind Peer-Reviewed, Open-Access, Multidisciplinary Online Journal

Volume 3 | Issue 5 | October 2024

- [6] F. J. M. Shamrat, Z. Tasnim, A. S. Rahman, N. I. Nobel, and S. A. Hossain, "An effective implementation of web crawling technology to retrieve data from the World Wide Web (WWW)," International Journal of Scientific & Technology Research, vol. 9, no. 01, pp. 1252-1256, 2020.
- [7] M. Balabanović, "An adaptive web page recommendation service," in Proc. 1st Int. Conf. Auto. Agents (AGENTS). New York, NY, USA: Association for Computing Machinery, 1997, pp. 378–385.
- [8] F. O. Isinkaye, Y. O. Folajimi, and B. A. Ojokoh, "Recommendation systems: Principles, methods and evaluation," Egyptian Informat. J., vol. 16, no. 3, pp. 261–273, Nov. 2015.
- [9] J. B. Schafer, J. Konstan, and J. Riedl, "Recommender systems in e-commerce," in Proc. 1st ACM Conf. Electron. Commerce, 1999, pp. 158–166.
- [10] L. R. Julian and F. Natalia, "The use of web scraping in computer parts and assembly price comparison," in 2015 3rd International Conference on..., 2017. [Online]. Available: IEEE Xplore.
- [11] A. V. Saurkar, K. G. Pathare, and S. A. Gode, "An overview on web scraping techniques and tools," International Journal on Future Trends in Computing and Communication, 2018.
- [12] G. N. Chandrika, S. Ramasubbareddy, and K. Govinda, "Web scraping for unstructured data over web," in Embedded Systems and Intelligent Technologies, 2020. Springer.
- Y.-M. Huang and S.-X. Du, "Weighted support vector machine for classification with uneven training class sizes," in Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on, vol. 7. IEEE, 2005.
- [14] Y.-J. Wu and W.-G. Teng, "An enhanced recommendation scheme for online grocery shopping," in 2011 IEEE 15th International Symposium on Consumer Electronics (ISCE), 2011. [Online]. Available: http://ieeexplore.ieee.org/document/5973860/.
- [15] Y. Hu, Y. Koren, and C. Volinsky, "Collaborative filtering for implicit feedback datasets," in 2008 Eighth IEEE International Conference on Data Mining, 2008, pp. 263–272.

Content from this work may be used under the term of the Creative Commons Attribution-Non-commercial (CC BY-NC) 4.0 licence. This license allows refusers to distribute, remix, adapt, and build upon the material in any medium or format for non-commercial purposes only, and only so long as attribution is given to the creator. Any further distribution of this work must maintain attribution to the creators. © copyright at IJIRID. **DOI:** 10.5281/zenodo.13986594 298